Two Tropinone Reductases with Distinct Stereospecificities from Cultured Roots of Hyoscyamus niger.
نویسندگان
چکیده
Tropinone is an alkamine intermediate at the branch point of biosynthetic pathways leading to various tropane alkaloids. Two stereospecifically distinct NADPH-dependent oxidoreductases, TR-I and TR-II, which, respectively, reduce tropinone to 3alpha-hydroxytropane (tropine) and 3beta-hydroxytropane (psi-tropine), were detected mainly in the root of tropane alkaloid-producing plants but not in nonproducing cultured root. Both reductases were purified to near homogeneity from cultured root of Hyoscyamus niger and characterized. The TR-I reaction was reversible, whereas the TR-II reaction was essentially irreversible, reduction of the ketone being highly favored over oxidation of the alcohol psi-tropine. Marked differences were found between the two reductase in their affinities for tropinone substrate and in the effects of amino acid modification reagents. Some differences in substrate specificity were apparent. For example, N-propyl-4-piperidone was reduced by TR-II but not by TR-I. Conversely, 3-quinuclidinone and 8-thiabicyclo[3,2,1]octane-3-one were accepted as substrates by TR-I but hardly at all by TR-II. Both enzymes were shown to be class B oxidoreductases, which transfer the pro-S hydrogen of NAD(P)H to their substrates. Possible roles of these tropinone reductases in alkaloid biosynthesis are discussed.
منابع مشابه
cDNA encoding tropinone reductase-II from Hyoscyamus niger.
Two stereospecific NADPH-dependent reductases, TR-I and TR-11, constitute a branching point in the biosynthesis of tropane alkaloids. TR-I catalyzes the stereospecific reduction of tropinone to tropine (Koelen and Gross, 1982), whereas TR-I1 reduces tropinone to pseudotropine (Drager et al., 1988). We previously characterized TRs that had been purified from cultured roots of Hyoscyamus niger (H...
متن کاملStructures and expression patterns of two tropinone reductase genes from Hyoscyamus niger.
In the biosynthesis of tropane alkaloids, two tropinone reductases (TRs) catalyze reduction of tropinone to different stereoisomers, tropine and pseudotropine. Two TRs from Hyoscyamus niger have 64% of identical amino acids and hence a common evolutionary origin. In this study, genomic clones of TRs were isolated from H. niger. Their sequence comparison showed that although they have the same e...
متن کاملIn Vitro Flower Production in Some Species of Hyoscyamus (H. pusillus L., H. arachnoideus Pojark, and H. niger L.)
Various plant organ segments including segments from roots (root tip, and root collar), stems, leaves, and also seeds of several Hyoscyamus species (i.e. H. pusillus, H. arachnoideus, annual and biennial H. niger from two distinct geographical regions) were cultured on MS media with various growth regulator combinations, to assess the ability of flower production. Statistical assessments showed...
متن کاملOverexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures.
The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In th...
متن کاملEffects of Arginine Pretreatments on Oxidative Stress Damages and Alkaloid Content in Roots of Hyoscyamus niger under Nickel Stress
Heavy metal pollution is a worldwide problem with serious environmental consequences. The objective of the present experiment was to investigate whether arginine as nitric oxide precursor and or polyamines substrate can decrease the destructive effects of oxidative stress induced by nickel contamination in Hyoscyamus niger plant. In this study the effects of arginine pretreatment on alkaloid co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 1992